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ABSTRACT

Perceptual Vector Quantization (PVQ) was developed for the
Daala video codec, which was intentionally designed to be
different from traditional video codecs. Since Daala contains
many unusual design elements, it can be difficult to separate
out the contributions of each, leaving uncertainty as to how
beneficial each one is on its own. We integrate PVQ into the
Alliance for Open Media’s AV1 codec, which follows a much
more traditional design. This confirms that it delivers large
perceptual improvements in such a codec, and uncovers im-
plementation issues we will have to resolve before it can be
adopted in the final codec design.

Index Terms— AOM, AV 1, Daala, compression, codec,
video, perceptual

1. INTRODUCTION

The Daala video coding project includes many less-conven-
tional techniques aimed at improving the perceptual quality of
video [!]. Some are easily integrated into a traditional video
codec, and some are not. Here, we give the results of integrat-
ing one of those techniques, Perceptual Vector Quantization,
into the Alliance for Open Media’s work-in-progress codec,
AV1 [2]. PVQ is a form of gain-shape vector quantization
designed to improve the perceptual quality of transform coef-
ficient quantization over that of scalar quantization [3].

Section 2 gives a brief overview of PVQ, how it enables
techniques such as signaling-free activity masking, and de-
scribes the challenges faced integrating PVQ into AV1. For
complete details of PVQ in Daala, we refer readers to [3].
Section 3 describes a new metric used by Daala to weigh
coding alternatives while taking account of human percep-
tion. We need this metric to avoid biasing top-level decisions
against the very perceptual properties we hoped to preserve
with PVQ. Finally, we present the results of integrating both
that metric and PVQ into AV1 in Section 4.

The AV 1 git repository contains the source code for all ex-
periments [2]. We take all test results from our Are We Com-
pressed Yet (AWCY) website, using the objective-1-
fast sequence set [4] and the methodology currently pro-
posed in the testing draft of the Internet Engineering Task
Force (IETF)’s NETVC working group [5]. The source code
for this is also available [6,7]. It uses five objective metrics,

whose implementations are available in the Daala git repos-
itory [8]. These are PSNR, SSIM [9], PSNR-HVS-M [10],
multiscale SSIM [11], and CIEDE 2000 [12]. The first four
are luma-only metrics, while the last is the only one to take
into account color. Unlike PSNR, SSIM, PSNR-HVS-M, and
MS SSIM all attempt to model human vision. CIEDE 2000
gives behavior very similar to PSNR.

2. PERCEPTUAL VECTOR QUANTIZATION

PVQ operates by extracting and explicitly coding percep-
tually meaningful parameters from transform coefficients.
It partitions transform coefficients into bands following an
octave-orientation structure, and computes, quantizes, and
codes the overall energy in each band (the gain, g). It then
normalizes the coefficients and codes the resulting unit vec-
tor (the shape) using a scheme based on Fischer’s Pyramid
Vector Quantization [13] with N — 1 degrees of freedom
(where N is the number of coefficients). This ensures the
total number of degrees of freedom, IV, remains unchanged,
so there is no redundancy in the encoding.

When a prediction is available, PVQ first uses it to predict
the gain. Then, after normalization, it quantizes and codes the
angle, 0, between the predictor and the input viewed as N-
dimensional vectors. A special noref flag (coded per-band)
tells the decoder to ignore the prediction when 6 would be 5
or larger (i.e., when the correlation of the input and the pre-
diction is zero or less). If PVQ does use the prediction, and
is non-zero, it codes a point on the N — 1 dimensional hyper-
sphere of radius g sin # orthogonal to that prediction vector.
This uses N — 2 degrees of freedom with the same vector
quantization scheme as in the unpredicted case.

The total number of degrees of freedom remains NV, but
instead of a collection of undiffierentiated AC coefficients,
we now have two perceptually meaningful parameters. The
gain indicates the overall contrast (energy) in each band, and
0 signals how closely the input matches the prediction. This
has a number of benefits. For example, it becomes cheaper to
signal changes in the overall contrast, since they are collected
in a single parameter, rather than requiring small updates to
potentially dozens of non-zero coefficients. Additionally, the
contrast is exactly the value the codec needs to know to use
activity masking to control the quantization resolution [14].

We derive that resolution inside every block on a band-



by-band level with no additional signaling. The gain itself
uses a non-linear companded quantizer. Then, once the gain
is known, we use it to derive the quantization resolution of
0, as well as the size of the vector quantization codebook,
which is related to the radius of the hypersphere: g in the non-
predicted case, and ¢ sin 6 in the predicted case. We disable
this activity masking for chroma, and, since activity masking
is less pronounced on edges, for 4 x 4 blocks.

To prevent packet loss from desynchronizing the bit-
stream, in the predicted case we use the approximation
sin @ ~ 6 to replace the dependency on sin # with the quanti-
zation index of 6. This also avoids a dependency on g, since
the quantization resolution of 6 depends on g in the same
way (the terms cancel). Additionally, this allows a decoder to
parse the bitstream without doing any of the signal processing
necessary to reconstruct the final coefficient values.

2.1. The Integration of PVQ into AV1

In Daala, which uses lapped transforms, all prediction oper-
ates in the frequency domain to avoid causality issues caused
by the lapping. AV1, however, uses traditional spatial intra
prediction and block-based motion compensation. As a re-
sult, we must apply an extra forward transform to construct
the frequency-domain predictions required on a per-band ba-
sis for PVQ, in both the encoder and decoder. In addition,
transform coders commonly optimize the case of applying an
inverse transform to only a small number of non-zero coeffi-
cients. However, with PVQ, the transform is not applied to
a sparse residual. The output of dequantization is a complete
vector in the neighborhood of the predictor, not a difference
from the predictor. Thus it often has many non-zero values,
making this optimization less effective. These issues con-
tribute to some amount of decoder complexity increase, but
transforms typically account for less than 10% of the compu-
tational budget of decoders for current-era codecs.

Still, the vector codebook search is slower than scalar
quantization, and our implementation currently lacks SIMD.
Compounding this, for each choice of prediction mode, trans-
form type, block size, etc., the current encoder uses a full
transform and quantization to evaluate the rate and distor-
tion for Rate Distortion Optimization (RDO). In comparison,
Daala has only one transform type and its encoder completely
decouples prediction from transform coding, leaving only the
transform block size decision at the transform stage. As a
result, at its slowest settings, AV1 invokes the PVQ quan-
tization routines up to 165 times more than in Daala [15].
That makes AV1 with PVQ enabled many times slower than
with scalar quantization. We expect that much of this can be
solved by using rate and distortion modeling to avoid invok-
ing the quantizer as often [16]. Even for scalar, this would
make searching the large space of potential coding options in
AV significantly faster, and is expected to be necessary for
practical encoders. Work to implement this is still underway.

PVQ must also account for the coefficient scanning or-
der. AV1, like VP9 on which it is based, uses both a DCT as
well as asymmetric DSTs as transforms, with multiple scan-
ning orders depending on the transform type. PVQ, however,
divides the coefficients into bands, and scans each band in-
dependently. To handle this, we keep the same band structure
(for all transform types), and scan the coefficients within each
band in the same order they would have been scanned in the
whole block with scalar quantization. This works reasonably
well as a first approximation, though we will likely have to re-
vise the band structure when AV1 adds additional transform
types, including, for example, the option of using the identity
(no transform) in either the horizontal or vertical directions
(or both). Similarly, we use the same quantization matrices
used by Daala (for all transform types) when activity mask-
ing is enabled, and flat quantization when it is disabled.

3. THE DAALA DISTORTION METRIC

Making perceptual trade-offs during quantization cannot by
itself ensure good perceptual quality. Quantization sits at the
bottom of the Rate-Distortion Optimization (RDO) process,
for a particular prediction block size, prediction mode, set
of prediction parameters, transform size, and transform type.
In practice, RDO selects from many possibilities for all of
these things. In doing so, it must measure the distortion intro-
duced by quantization in a way that is comparable for differ-
ent choices of transform size and transform type.

If RDO uses a simple distortion metric, such as Mean
Squared Error (MSE), it runs the risk of destroying the per-
ceptual trade-offs made by the underlying quantization. For
example, suppose a region contains areas of both high and
low contrast. When coded with multiple transform blocks,
PVQ will use less quantization in the regions of low contrast,
and more quantization in the regions of high contrast. When
coded with a single transform block, PVQ will quantize the
whole region somewhere in between. MSE-based RDO will
then tend to choose the latter over the former, since spend-
ing the extra bits in the low-contrast regions will appear to be
inefficient and since it cannot tell that distortions hidden in
the high-contrast region will be less visible. With the large
block sizes of modern codecs, making macro-scale mistakes
in the choice of prediction mode, transform size, or transform
type can be devastating to visual quality. Another issue is that
PVQ does not use activity masking for 4 x 4 blocks, as these
typically contain edges. Using MSE as a top-level distortion
metric creates a strong bias for choosing 4 x 4 blocks.

To combat these issues, we use a more sophisticated dis-
tortion metric for higher-level RDO decisions. It is intended
as a crude approximation to PSNR-HVS-M [10] for use inside
the coding loop, and contains many features that have long
been used to weight the perceptual visibility of errors [17]:

1. A frequency-dependent weighting that approximates
the Contrast Sensitivity Function (CSF).



2. An activity measure to account for spatial masking.

3. Anenergy preservation term that penalizes mismatches
in the amount of activity in a region.

3.1. The Definition of the Metric

The metric operates over N x M regions in the luma plane,
where NV and M are multiples of 8 (for smaller regions or re-
gions in the chroma planes, we simply use MSE). To begin,
we apply a simple spatial filter whose frequency response is
meant to approximate that of the human CSF. PSNR-HVS-
M uses the JPEG quantization matrix for this purpose, and
an earlier version of our metric applied a DCT and weighted
the errors in the frequency domain in the same way, but this
is very computationally expensive. Instead, we apply a 3-tap
filter of the form [1 K 1] /(K + 2) to the coding error in
both the horizontal and vertical directions, using mirroring at
the boundaries of the N x M block (mirroring tested slightly
better than simple edge extension). We find that K’ = 5 pro-
vides a close fit for the desired frequency weighting, as Fig. 1
shows. The filter falls off a bit more steeply at high frequen-
cies and does not apply a smaller weight to DC than the low-
est AC frequency, but we saw improvements in PSNR-HVS-
M compared to using a DCT and weighting errors in the fre-
quency domain (see Table 1), possibly due to reduced aliasing
and round-off errors in the calculations.

0

Fig. 1: 2-D frequency response in dB (vertical axis) of our
spatial filter (purple, bottom) vs. an 8 x 8 DCT matrix (blue,
top). The two horizontal axes are spatial frequency in radians.

Then we partition the region into 8 x 8 blocks. In each
block, we compute the variance of overlapping 4 x 4 sub-
blocks of the input image at every even offset (nine variance
calculations total), and take the harmonic mean:
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PSNR PSNR-HVS SSIM MS-SSIM CIEDE 2000
—0.10% —-1.17% 0.53% 0.14% —0.18%

Table 1: BD-rate changes when moving from an 8 x 8 DCT
and frequency-dependent weighting to a spatial filter that ap-
proximates that weighting. All numbers are percent changes
in bitrate at equivalent quality (more negative is better).

where 0%1.’2 ; is the variance of the 4 x 4 sub-block at position

(24, 27) in the parent 8 x 8 block. We add the noise floor Charm,
currently set to 1 in AV, to prevent division by zero. The
harmonic mean gives more weight to less active (low contrast)
regions, as this is where errors are more visible. In practice
simpler measures such as the minimum variance also work,
but the harmonic mean provided slightly better results when
activity masking was enabled for PVQ in Daala.
We then define the activity, A, as

1
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where C) is a calibration constant chosen roughly to keep
equal bitrate with and without the activity term. We currently
use Cyeq = 1.95. Again, the % term is added as a noise floor.
We chose the exponent, —%, to match the activity masking
exponent used by PVQ itself [3].

Now, let &%m be the variance of the 4 x 4 sub-block of
the coded image and let e; ; be the filtered error signal. Then
the total distortion in the 8 x 8 block is
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The first term measures the (frequency-weighted) error pixel-
by-pixel, and the second measures mismatches in the amount
of energy present (e.g., the injection of noise in flat regions
or the low-passing of textured regions). We originally in-
troduced the second term in Daala to avoid a bias towards
skipping in regions with a small amount of texture. It also
appears to provide a small gain on perceptual metrics in AV1
(see Table 2), but could be dropped for simplicity. The total
is weighted by the overall activity of the region.

The total distortion for the N x M region is then just the
sum of DP*® for each block, scaled by another calibration
constant, Chys(QP). We use Chys(QP) to scale the average
distortion to match MSE when using the given Quantization
Parameter (QP). This allows us to use the same lambda dur-
ing RDO when using this distortion function, and allows us to
easily combine distortion measured in the luma and chroma
planes. To tune Chys(QP) we fixed it at constant 1, collected
coded sequences for 8 values spanning the QP range and for



PSNR PSNR-HVS
0.17% —0.01%

SSIM MS-SSIM CIEDE 2000
-0.32%  —0.19% 0.65%

Table 2: BD-rate changes by adding the energy preservation
term in AV 1. Measured on the first five frames of object -
ive-1-fast only. All numbers are percent changes in bi-
trate at equivalent quality (more negative is better).

PSNR- CIEDE

PSNR HVS SSIM MS-SSIM 2000
PVQ 3.39% 5.06% 3.40% 4.06% 2.8™%
DD 11.47% —3.64% —2.41% —8.51% 7.58%

PVQ+AM 30.64% —5.88% 1.29% —11.62% 23.78%

Table 3: BD-rate changes from MSE-optimized scalar quan-
tization using MSE-optimized PVQ, the Daala distortion met-
ric (DD), and PVQ with activity masking and the Daala dis-
tortion metric (PVQ+AM). All numbers are percent changes
in bitrate at equivalent quality (more negative is better).

each QP value calculated a simple linear regression of MSE
against DE;;& The trends for keyframes and other frames
differ significantly, but keyframes tend to use lower QP val-
ues, so we fit a piecewise quadratic interpolation that eased
between the trends across the range.

The resulting distortion function is slower than plain
MSE, as each 8 x 8 block requires applying two 3-tap filters,
and one multiply per pixel for both the input and the target to
compute the variances, plus O(1) additional work. However,
it is not too slow to be impractical. Some computation could
be saved by re-using the variances and activity calculations
for the input image when comparing multiple alternatives.

4. RESULTS

We test the codec' on 15 frames of objective-1-fast?’
in four configurations: scalar quantization, MSE-optimized
PVQ (with flat quantization and no activity masking), scalar
quantization with the Daala distortion metric, and PVQ with
non-flat quantization, activity masking, and the Daala distor-
tion metric. Table 3 summarizes the results.

In Daala, MSE-optimized PVQ was significantly better
than scalar [3]. Here it is somewhat behind. This is likely
due to relatively poor tuning of Daala’s scalar implementa-
tion. Conversely, in preliminary results presented last year,
MSE-optimized PVQ in AV1 gave performance very close to
that of scalar: within 1% BD-rate on all metrics, and a slight

1Using commit e 93acb2d228c¢ in the AV git repository [2].
215 frame results were used only to meet publication deadlines. If ac-
cepted, the final paper will include results for the complete sequences.

advantage on PSNR and CIEDE 2000 [15]. Improvements in
the tuning of the scalar quantizer in AV1 since then and re-
gressions in PVQ due to other changes have widened the gap.
However, these results demonstrate that quality of implemen-
tation matters more than the choice of scalar vs. vector.

While using perceptually-tuned quantization with a sim-
ple top-level distortion metric will not work, using the Daala
distortion metric with scalar quantization demonstrates that
the reverse does work. Despite the degredation in PSNR, we
show significant improvements in all perceptual metrics. Ad-
hoc inspection confirms that they do look better, with sharper
edges in low-contrast areas and better detail retention.

PVQ with all of its perceptual features enabled ampli-
fies this trend even further, with the exception of SSIM. The
perceptual gains are even more significant given that MSE-
optimized PVQ was starting from behind.

(a) Scalar (b) PVQ+AM

Fig. 2: Detail section frame 20 of dark 70p encoded at equal
bitrate with (a) scalar quantization and (b) PVQ with activity
masking. The shirt retains more texture, and banding, ringing
and blockiness are reduced.

(b) PVQ+AM

(a) Scalar

Fig. 3: Detail section of frame 20 of drivingpov encoded
at equal bitrate with (a) scalar quantization and (b) PVQ with
activity masking. Details in the road are better preserved.

5. CONCLUSION

Overall, PVQ delivers substantial visual quality improve-
ments in a traditional codec design. Some issues remain to be
solved, such as the increase in encoder complexity, and some
integration issues with other current or planned AV1 tools.
We are actively working to solve them in future work.
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